Simulation-based Assessment of Exposures with hazardous Substances
– Synergistic Application of Fire Engineering Models –

A.1 Risk assessment of hazardous substances

- Opportunities for risk assessment corresponding to GefStoffV (german regulation act):
 - Measurement and analogous review → comparable conditions necessary
 - Calculation → possibility of to predict concentrations

- Existing and used calculation models in occupational health and safety:
 - e.g. simple orientating estimations, emission-calculations, calculations of concentration in air; simplifying concepts
 - evident weakness in estimation of local concentration in air, e.g. assumption of locally-homogenous concentrations (admissibility to reality?)
 - uncertain application scopes, usually no validation or widescale restricted application scope

→ Applicability to get „real” calculation results?

A.2 Fire Engineering: Smoke Management Simulation

- e.g. focussed on calculations to design the local- and time-depended smoke management
- Concept: fragmentation in calculation fields (typically 0.001-0.008m³), time-depended solution of thermodynamic and dispersion parameters for each field (i.a. Navier-Stokes-Equations)
- Smoke: considered as mixture of different (hazardous) substances, opportunity to solve dispersion equations without defined fire scenario and with detailing substanceous emission
 → Point of intersection with occupational safety studies as potential synergy
- benefit: local- and time-dependence, several validation studies for fire scenarios (heat release, increasing temperatures, bouyancy flows etc.)
 → Focus of research: Possibility to apply in occupational health and safety studies?

A.3 Calculation Model: gaseous dispersion in air

- formal applicability of calculation systematic for occupational and fire safety studies
- common parameters: geometry, thermodynamic conditions, ventilation s.o.
- parameters for studies of smoke-dispersion:
 fire scenario with heat release (thermal force on dispersion etc.), emitted components and mass fractions in smoke (calculation of total mass flow)
 parameters for substanceous dispersion without fire:
 Substance with its properties, area of emission, emitted mass flow over area
 → without heat release: different parameters essential for dispersion (e.g. ventilation flows)
 → reasonable estimation of emission? assessment of calculated concentration in air?
 → Supplementations to an integrated assessment concept, transferability?

B.1 Integrated assessment concept

- Modular design (structural plan):
 - Determination of information: adjusted „working system“ to capture all needed parameters (to ensure completeness)
 - Capture of emission: approbriate choice from model pool (calculations, analogous assumptions by similarly cases, unnecessary in case of known emission parameters) and situation-dependend application
 - Basis: determination of information in „working system“
 - Capture of dispersion: Application of fire engineering model „Fire Dynamics Simulator“ (FDS) [NIST, USA],
 Basis: determination of information in „working system“, area-weighted mass flow of emission as result of capture of emission (interface with conversion factor, if needed)
Assessment of exposures: identification of risks based on worker-to-concentration-coincidence
Basis: determination of information in „working system“, time- and local-dependend concentration in air as result of capture of dispersion (interface with conversion factor, if needed)

• Conceptual definition: structural procedure and internal interfaces
⇒ Object of investigation

B.2 Computational results

• calculation results for dispersion: Properties of utilisation
quantitative progress of concentration in air (tabular), e.g. graph over time
⇒ relation to limit values, comparing ventilation designs as basis for selection etc.
• qualitative visualisation
⇒ local flows, time-dependend concentrations in air, risk communication etc.

⇒ Topics of research:
• Calculation of dispersion:
 Accuracy, application scope, validity as precondition for transferability?
• Integrated assessment concept:
 Functionality modular design, definition of interfaces and conversion factors, validity of „full-case-calculation“ (emission and dispersion)?
⇒ Validation studies as basis for practical application

C.1 Validation studies

• Investigation of research topics
• Approach: Measurement of reference concentrations in defined conditions, relation to calculated concentrations (calculation with conditions as input parameters)
 • Research-project funded by DGUV: Emission of propane, evaporation of isopropyl alcohol, variable conditions, different measure points
 • Data usage of IPA-ExposureLaboratory: various substances, increasing-/decreasing-progresses of concentrations with known conditions, defined measure point
• Results of relations:
 • Calculation of dispersion with fire engineering model: for dot-like gaseous emission no validity, validity for areal emission / evaporation
⇒ Demonstration of methodical transfer of the fire engineering model
 • Integrated assessment concept: Functionality determination of information and interfaces, evaporation models without validity under used reference conditions, influence on calculation of dispersion (under-estimated concentrations in air)
⇒ no validity whit application of evaporation models (“full-case-calculations”) under investigated conditions
⇒ Definition of application scope to calculate gaseous dispersion resp. to apply integrated assessment concept in occupational health and safety studies

C.2 Applicability and practical scope

• Basis: Results of research (correct interfaces, validity calculation of gaseous dispersion, no validity of emission-calculations) and identified preconditions
• Application scope i.a.:
 • Dispersion of gases, „normal-temperature“
 • waiver of calculated emission-mass-flows (other estimation necessary)
 • known substance and properties (or detailed estimation)
 • areal emission with known conditions (area, mass flow etc.)
 • known ventilation conditions (area, volume flow s.o.)
 • safety factors (e.g. ventilation rates and high emission-mass-flows)
 • Accuracy of calculation increases with precision of input parameters
• potential scopes in occupational health and safety studies i.a.:
 • situation-specific risk assessment (relation to limit values, defining precautionary systems) ⇒ high effort!
 • Defining practical tools and configuration guides for typical working situations (e.g. for branches)
 • forensic analysis and reconstruction of exposure situations for workers

⇒ Expert-Tool to estimate substance-specific risk as option for practical applications